PRIMEIROS RESULTADOS DE FERTILIZAÇÃO COM SÉMEN CONGELADO DA TRUTA ARCO-ÍRIS, Salmo irideus Gibbons, NO BRASIL

(First results of fertilization of deep frozen semen of rainbow trout, Salmo irideus Gibbons, in Brazil)

RESUMO

No presente estudo verificou-se a possibilidade da congelação rápida em gelo seco e conservação em nitrogênio líquido do sêmen da truta arco-íris, Salmo irideus, Gibbons. O experimento foi conduzido na Estação Experimental de Salmaricultura de Campos do Jordão, São Paulo. Após trinta minutos de criopreservação, o sêmen foi descongelado rapidamente e imediatamente adicionado a óvulos frescos recém-celetados. Em quarenta testes, a frequência média de fertilização com sêmen congelado foi 10,55%, enquanto que, com o sêmen fresco utilizado como controle, foi igual a 77,57%. Investigações posteriores deverão ser conduzidas, a fim de se obter melhores resultados de fertilidade em condições práticas ao nível de controle de incubação.

ABSTRACT

A study of freezing rainbow trout semen, Salmo irideus Gibbons, with dry ice and stored in liquid nitrogen (LN2) was carried out at the Estação Experimental de Salmaricultura de Campos do Jordão, São Paulo. Thirty minutes after cryopreservation, the semen was thawed as rapidly as possible and immediately mixed with fresh eggs. In forty tests the average percent fertilization with cryo-preserved sperm was 10.55%, and with the control fresh semen was 77.57%. Further investigations will have to be conducted in order to achieve better fertility results under practical hatchery conditions.

1. INTRODUÇÃO

A conservação do sêmen sob refrigeração (4°C) contribuiu amplamente para a difusão da inseminação artificial entre os mamíferos domésticos, principalmente entre os bovinos. No entanto, após a introdução da glicerina como substância crioprotetora dos espermatozoides de aves e mamíferos, respectivamente por POLGE; SMITH; PARKES (1949) e SMITH & POLGE (1950), assim como, os resultados favoráveis de fertilização com sêmen congelado de bovinos por POLGE & ROWSON (1952), foi que decidiadamente a inseminação artificial teve o impulso desejado, principalmente com relação ao estudo do melhoramento genético e por conseguinte, a seleção de reprodutores de elevado padrão zootécnico e a implantação da técnica em milhares de rebanhos.

A literatura especializada sobre congelamento e criopreservação do sêmen de peixes apresenta vários trabalhos que atingem sobretudo os salmonídeos. Dentre eles predominam os estudos sobre congelamento do sêmen de trutas, com resultados variáveis.

Mitchum 1963, apud HORTON E OTT (1976) trabalhou com a truta arco-íris, Salmo gairdneri, congelando o sêmen tanto em gelo seco como em nitro-
gênio líquido. Entretanto, os testes de fertilização foram negativos.

Os trabalhos sobre congelação rápida em gelo seco do sêmen da truta arco-íris, *Salmo gairdneri*, descritos por BU-YUKHATIPOGLU & HOLTZ (1978), STOSS; BU-YUKHATIPOGLU; HOLTZ (1978) apresentaram respectivamente, 30,90% e 26,00% de eclosões, enquanto que STEIN & BAYRLE (1978), STOSS & HOLTZ (1981 a,b) obteram respectivamente, 81,90%, 81,10% e 87,10% de óvulos fecundados.

HOLTZ et alii (1976) com a mesma espécie de peixe conseguiram 9% de fertilização com sêmen congelado pelo método rápido, tanto em gelo seco como em nitrogênio líquido. Todavia, LEGENDRE & BILLARD (1980) alcançaram ao redor de 90% de fecundações tanto para o sêmen criopreservado como para o sêmen fresco utilizado com o controle.

ERDHAL & GRAHAM (1978) descobriram 90% de eclosões quando utilizaram sêmen congelado pelo método rápido de três espécies de trutas. Não citaram qual o meio congelante empregado durante o congelamento.

Pela importância conferida a preservação do material fecundante sob congelação profunda a −79°C ou −196°C, procuramos estudar a técnica de congelamento rápido empregando o gelo seco, a criopreservação em nitrogênio líquido e verificar os resultados de fertilização, a fim de possibilitar a intensificação da produção dos plantães de peixes já existentes, com vistas sobretudo ao incremento da produção de espécies de valor econômico. Por outro lado, outros ensaios poderão ser conduzidos, principalmente aqueles dirigidos ao melhoramento genético.

2. MATERIAL E MÉTODOS

Enquanto o sêmen permanecia sob refrigeração, efetuou-se a avaliação da motilidade e da concentração dos espermatozóides. Somente amostras apresentadas alta concentração e alta motilidade foram utilizadas para o congelamento.

Antes do congelamento, o sêmen foi diluído no meio preconizado por STEIN & BAYRLE (1978) com a seguinte composição:

- **NaCl** = 750mg
- **NaHCO₃** = 200 mg
- **KCl** = 38 mg
- **Glicose** = 100 mg
- **Gema de ovo** = 20ml
- **Dimetilsulfôxido** = 10%

A diluição foi feita na proporção de 1:4 com o diluente e sêmen na mesma tempera-
tura (2°C). Em seguida, procedia-se ao exame microscópico da amostra, com objetivo de orientar sobre o aproveitamento do material.

O sêmen diluído permaneceu durante 15 (quinze) minutos sob refrigeração a 2°C (tempo de equilíbrio) para em seguida ser congelado.

Vinte amostras foram congeladas, go-tejando-se 0,2 ml do material diretamente sobre a superfície de um bloco de gelo seco (−79°C). Desta forma, a temperatura do material decresceu de 2°C a −79°C, obtendo-se assim os “pellets” (NAGASE & NIWA, 1964), os quais após 15 (quinze) minutos, foram imersos diretamente em nitrogênio líquido (−196°C). Em seguida foram transferidos para “container” especial, onde se processou a criopreservação.

Ao fim de cada processo de criopreservação, que durou 30 minutos, alguns “pellets” eram descongelados em temperatura ambiente numa solução de bicarbonato de sódio a 1% (solução ativadora dos espermatozóides). Em seguida, as células espermáticas eram examinadas sob microscopia de contraste de fase para verificação da qualidade do material pós-congelamento.

To, após o que os “pellets” de cada reproduutor foram descongelados na proporção de 3 (três) “pellets” para 10 ml da solução acima citada e imediatamente adicionados a óvulos frescos.

Para o teste de fertilização, com sêmen fresco, utilizando óvulos de duas fêmeas de 3 a 4 anos de idade respectivamente, foram empregados em média 13 (treze) milhões de espermatozóides viáveis por óvulo, enquanto que, para o sêmen congelado, essa quantidade foi aumentada para 44 (quarenta e quatro) milhões, considerando-se que havia mortalidade no processo de congelação. A incubação, seguindo as normas clássicas recomendadas, foi conduzida em separado para o sêmen fresco e para o sêmen congelado, constituindo-se um grupo controle e um grupo teste.

O índice de fertilidade foi calculado pela relação entre número de ovos embrionados e número de ovos incubados. A análise estatística dos dados consistiu na aplicação do teste de qui-quadrado (χ²). (GOLDSTEIN, 1965), utilizando-se as porcentagens de fertilização, tendo sido estabelecido o nível de 5% para rejeição ou não, da hipótese de nulidade (Ho).

3. RESULTADOS

As vinte coletas de sêmen apresentaram em média as seguintes características:

a) volume (ml) – 8,2
b) concentração de espermatozóides/mm³ – 6 x 10⁶
c) formas variáveis (%) – 69

3.1 Sêmen congelado

Houve sempre alta motilidade do sêmen diluído antes do congelamento, evidenciando o pleno equilíbrio entre o sêmen e o meio diluidor.

Foram congelados 793 “pellets”, dos quais, 681 foram utilizados para a fertilização artificial.

O limite máximo de tempo de descongelamento dos “pellets” na solução ativadora de bicarbonato de sódio a 1%, não deve exceder a 30 (trinta) segundos (STEIN & BAYRLE, 1978). Neste trabalho o tempo de descongelamento ultrapassou esse limite, evento que, provavelmente, reduziu consideravelmente o número necessário e pré-calculado de espermatozóides viáveis por óvulo a ser fecundado. Verifica-se este fato pela grande variação de fertilidade quando se comprem os dados contidos na TABELA 1.
TABELA 1

<table>
<thead>
<tr>
<th>DATA DO (%) DE VIVOS (%)</th>
<th>FERTILIDADE (%)</th>
<th>(%) DE VIVOS (%)</th>
<th>FERTILIDADE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>02</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>03</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>04</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>05</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>06</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>07</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>08</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>09</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>10</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>11</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>12</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>13</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>14</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>15</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>16</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>17</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>18</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>19</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>20</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>21</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>22</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>23</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>24</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>25</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>26</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>27</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>28</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>29</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>30</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>31</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>32</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>33</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>34</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>35</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>36</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>37</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>38</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>39</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>40</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>41</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>42</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>43</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>44</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>45</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>46</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>47</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>48</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>49</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>50</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>51</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>52</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>53</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>54</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>55</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>56</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>57</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>58</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>59</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>60</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>61</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>62</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>63</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>64</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>65</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>66</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>67</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>68</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>69</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>70</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>71</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>72</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>73</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>74</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>75</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>76</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>77</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>78</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>79</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>80</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>81</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>82</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>83</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>84</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>85</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>86</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>87</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>88</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>89</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>90</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>91</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>92</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>93</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>94</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>95</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>96</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>97</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>98</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>99</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>100</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
<tr>
<td>TOTAL GERAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.5</td>
<td>11.0</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Devido a rápida mortalidade dos espermatozoides pós-corgelamento, não foi possível avaliar com segurança a nível microscópico a porcentagem de células viáveis.

A taxa média de fertilidade foi 10,48% e 10,92%, respectivamente, às fêmeas de 3 a 4 anos de idade, valores estes que dispensam qualquer tratamento estatístico para revelar diferença não signifi- cativa entre os mesmos. Assim, num total de 40 (quarenta) testes a média geral de fertilidade das fêmeas de 3 a 4 anos, foi 10,55%.

3.2 Sêmen fresco

Quanto ao sêmen fresco utilizado como controle, verifica-se pelos dados da TABELA 2 que existe uma certa regularidade nas taxas de fertilidade.

<table>
<thead>
<tr>
<th>TABELA 2</th>
<th>Porcentagem de sêmen em três meses de armazenamento, Selmo iridiu Gibbours, após fertilização com ovos de fêmea, p. a. 20 de julho de 1981.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fêmeas de 2 anos de idade</td>
</tr>
<tr>
<td>Nº de sêmenes</td>
<td>N% de sêmenes por bosta (x 10³)</td>
</tr>
<tr>
<td>01</td>
<td>10,29</td>
</tr>
<tr>
<td>03</td>
<td>17,06</td>
</tr>
<tr>
<td>04</td>
<td>16,77</td>
</tr>
<tr>
<td>05</td>
<td>16,77</td>
</tr>
<tr>
<td>06</td>
<td>16,77</td>
</tr>
<tr>
<td>07</td>
<td>16,77</td>
</tr>
<tr>
<td>09</td>
<td>16,77</td>
</tr>
<tr>
<td>11</td>
<td>16,77</td>
</tr>
<tr>
<td>12</td>
<td>16,77</td>
</tr>
<tr>
<td>13</td>
<td>16,77</td>
</tr>
<tr>
<td>14</td>
<td>16,77</td>
</tr>
<tr>
<td>15</td>
<td>16,77</td>
</tr>
<tr>
<td>16</td>
<td>16,77</td>
</tr>
<tr>
<td>17</td>
<td>16,77</td>
</tr>
<tr>
<td>18</td>
<td>16,77</td>
</tr>
<tr>
<td>19</td>
<td>16,77</td>
</tr>
<tr>
<td>20</td>
<td>16,77</td>
</tr>
<tr>
<td>21</td>
<td>16,77</td>
</tr>
<tr>
<td>22</td>
<td>16,77</td>
</tr>
</tbody>
</table>

Do emprego de 13×10^6 espermatozoides de viáveis por ovulo, em média, a taxa de fertilização média para fêmeas de 3 anos de idade foi 78,88% e 78,44% para as de 4 anos, resultado esse que não diferiu significativamente ao nível de 5% de probabilidade. Assim nos 40 testes realizados, obteve-se uma porcentagem média de 77,57%.

Pelos dados de fertilização calculados, utilizando-se sêmen fresco (77,57%) e congelado (10,55%) observa-se uma diferença significativa a favor do sêmen fresco ao nível de 5% (teste χ^2).

4. DISCUSSÃO

Os resultados com sêmen congelado revelaram uma taxa de fertilidade geral média de 10,55% em quarenta testes que, em termos médios, aproximava-se daqueles obtidos por HOLTZ et alii (1976) que conseguiu 9% de fertilização e dos ensaios de Mitchum 1963, apud HORTON & OTT (1976); diferem, porém, dos resultados de GRAYBILL & HORTON (1969), OTT & HORTON (1971 b) que obtiveram respectivamente, 13% e 59% de fertiliza-
rísticas adequadas para o seu aproveitamento, revelada ademais pela taxa de ovos embrionados obtida.

Em vistas dos resultados obtidos, pesquisas de criopreservação deverão ainda ser conduzidas, a fim de se conseguir uma técnica factível de ser utilizada na rotina da reprodução artificial, alinhar a uma fertilidade condizente com os parâmetros econômicos das centrais de incubação.

5. CONCLUSÃO

A taxa de fertilização com sêmen congelado foi em média 10,55%, resultado que revela a possibilidade da criopreservação do sêmen da truta arco-íris.

AGRADECIMENTOS

REFERÊNCIAS BIBLIOGRÁFICAS

